\(\int \frac {(e \sec (c+d x))^{7/2}}{(a+i a \tan (c+d x))^3} \, dx\) [249]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F(-2)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 28, antiderivative size = 116 \[ \int \frac {(e \sec (c+d x))^{7/2}}{(a+i a \tan (c+d x))^3} \, dx=-\frac {6 i e^4}{5 a^3 d \sqrt {e \sec (c+d x)}}-\frac {6 e^4 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 a^3 d \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}+\frac {4 i e^2 (e \sec (c+d x))^{3/2}}{5 a d (a+i a \tan (c+d x))^2} \]

[Out]

-6/5*I*e^4/a^3/d/(e*sec(d*x+c))^(1/2)-6/5*e^4*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/
2*d*x+1/2*c),2^(1/2))/a^3/d/cos(d*x+c)^(1/2)/(e*sec(d*x+c))^(1/2)+4/5*I*e^2*(e*sec(d*x+c))^(3/2)/a/d/(a+I*a*ta
n(d*x+c))^2

Rubi [A] (verified)

Time = 0.17 (sec) , antiderivative size = 116, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3581, 3582, 3856, 2719} \[ \int \frac {(e \sec (c+d x))^{7/2}}{(a+i a \tan (c+d x))^3} \, dx=-\frac {6 i e^4}{5 a^3 d \sqrt {e \sec (c+d x)}}-\frac {6 e^4 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 a^3 d \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}+\frac {4 i e^2 (e \sec (c+d x))^{3/2}}{5 a d (a+i a \tan (c+d x))^2} \]

[In]

Int[(e*Sec[c + d*x])^(7/2)/(a + I*a*Tan[c + d*x])^3,x]

[Out]

(((-6*I)/5)*e^4)/(a^3*d*Sqrt[e*Sec[c + d*x]]) - (6*e^4*EllipticE[(c + d*x)/2, 2])/(5*a^3*d*Sqrt[Cos[c + d*x]]*
Sqrt[e*Sec[c + d*x]]) + (((4*I)/5)*e^2*(e*Sec[c + d*x])^(3/2))/(a*d*(a + I*a*Tan[c + d*x])^2)

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 3581

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[2*d^2*
(d*Sec[e + f*x])^(m - 2)*((a + b*Tan[e + f*x])^(n + 1)/(b*f*(m + 2*n))), x] - Dist[d^2*((m - 2)/(b^2*(m + 2*n)
)), Int[(d*Sec[e + f*x])^(m - 2)*(a + b*Tan[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, d, e, f, m}, x] && EqQ[a
^2 + b^2, 0] && LtQ[n, -1] && ((ILtQ[n/2, 0] && IGtQ[m - 1/2, 0]) || EqQ[n, -2] || IGtQ[m + n, 0] || (Integers
Q[n, m + 1/2] && GtQ[2*m + n + 1, 0])) && IntegerQ[2*m]

Rule 3582

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[d^2*(
d*Sec[e + f*x])^(m - 2)*((a + b*Tan[e + f*x])^(n + 1)/(b*f*(m + n - 1))), x] + Dist[d^2*((m - 2)/(a*(m + n - 1
))), Int[(d*Sec[e + f*x])^(m - 2)*(a + b*Tan[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2
 + b^2, 0] && LtQ[n, 0] && GtQ[m, 1] &&  !ILtQ[m + n, 0] && NeQ[m + n - 1, 0] && IntegersQ[2*m, 2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rubi steps \begin{align*} \text {integral}& = \frac {4 i e^2 (e \sec (c+d x))^{3/2}}{5 a d (a+i a \tan (c+d x))^2}-\frac {\left (3 e^2\right ) \int \frac {(e \sec (c+d x))^{3/2}}{a+i a \tan (c+d x)} \, dx}{5 a^2} \\ & = -\frac {6 i e^4}{5 a^3 d \sqrt {e \sec (c+d x)}}+\frac {4 i e^2 (e \sec (c+d x))^{3/2}}{5 a d (a+i a \tan (c+d x))^2}-\frac {\left (3 e^4\right ) \int \frac {1}{\sqrt {e \sec (c+d x)}} \, dx}{5 a^3} \\ & = -\frac {6 i e^4}{5 a^3 d \sqrt {e \sec (c+d x)}}+\frac {4 i e^2 (e \sec (c+d x))^{3/2}}{5 a d (a+i a \tan (c+d x))^2}-\frac {\left (3 e^4\right ) \int \sqrt {\cos (c+d x)} \, dx}{5 a^3 \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}} \\ & = -\frac {6 i e^4}{5 a^3 d \sqrt {e \sec (c+d x)}}-\frac {6 e^4 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 a^3 d \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}+\frac {4 i e^2 (e \sec (c+d x))^{3/2}}{5 a d (a+i a \tan (c+d x))^2} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 1.64 (sec) , antiderivative size = 117, normalized size of antiderivative = 1.01 \[ \int \frac {(e \sec (c+d x))^{7/2}}{(a+i a \tan (c+d x))^3} \, dx=\frac {2 e e^{-i d x} \left (-2+\frac {6 e^{2 i (c+d x)} \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{2},\frac {3}{4},-e^{2 i (c+d x)}\right )}{\sqrt {1+e^{2 i (c+d x)}}}\right ) (e \sec (c+d x))^{5/2} (\cos (c+2 d x)+i \sin (c+2 d x))}{5 a^3 d (-i+\tan (c+d x))^3} \]

[In]

Integrate[(e*Sec[c + d*x])^(7/2)/(a + I*a*Tan[c + d*x])^3,x]

[Out]

(2*e*(-2 + (6*E^((2*I)*(c + d*x))*Hypergeometric2F1[-1/4, 1/2, 3/4, -E^((2*I)*(c + d*x))])/Sqrt[1 + E^((2*I)*(
c + d*x))])*(e*Sec[c + d*x])^(5/2)*(Cos[c + 2*d*x] + I*Sin[c + 2*d*x]))/(5*a^3*d*E^(I*d*x)*(-I + Tan[c + d*x])
^3)

Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 472 vs. \(2 (125 ) = 250\).

Time = 8.08 (sec) , antiderivative size = 473, normalized size of antiderivative = 4.08

method result size
default \(-\frac {2 i \sqrt {e \sec \left (d x +c \right )}\, \left (4 i \left (\cos ^{3}\left (d x +c \right )\right ) \sin \left (d x +c \right )-3 \left (\cos ^{2}\left (d x +c \right )\right ) E\left (i \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}+3 \left (\cos ^{2}\left (d x +c \right )\right ) F\left (i \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}+4 i \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )-4 \left (\cos ^{4}\left (d x +c \right )\right )-6 \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, E\left (i \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )+6 \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, F\left (i \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )-3 i \cos \left (d x +c \right ) \sin \left (d x +c \right )-4 \left (\cos ^{3}\left (d x +c \right )\right )-3 \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, E\left (i \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}+3 F\left (i \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}+5 \left (\cos ^{2}\left (d x +c \right )\right )+5 \cos \left (d x +c \right )\right ) e^{3}}{5 a^{3} d \left (\cos \left (d x +c \right )+1\right )}\) \(473\)

[In]

int((e*sec(d*x+c))^(7/2)/(a+I*a*tan(d*x+c))^3,x,method=_RETURNVERBOSE)

[Out]

-2/5*I/a^3/d*(e*sec(d*x+c))^(1/2)*(4*I*sin(d*x+c)*cos(d*x+c)^3-3*cos(d*x+c)^2*EllipticE(I*(-csc(d*x+c)+cot(d*x
+c)),I)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)+3*cos(d*x+c)^2*EllipticF(I*(-csc(d*x+c)+cot
(d*x+c)),I)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)+4*I*cos(d*x+c)^2*sin(d*x+c)-4*cos(d*x+c
)^4-6*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(I*(-csc(d*x+c)+cot(d*x+c)),I)*(1/(cos(d*x+c)+1))^(1/2)*cos(d
*x+c)+6*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(I*(-csc(d*x+c)+cot(d*x+c)),I)*(1/(cos(d*x+c)+1))^(1/2)*cos
(d*x+c)-3*I*cos(d*x+c)*sin(d*x+c)-4*cos(d*x+c)^3-3*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(I*(-csc(d*x+c)+
cot(d*x+c)),I)*(1/(cos(d*x+c)+1))^(1/2)+3*EllipticF(I*(-csc(d*x+c)+cot(d*x+c)),I)*(1/(cos(d*x+c)+1))^(1/2)*(co
s(d*x+c)/(cos(d*x+c)+1))^(1/2)+5*cos(d*x+c)^2+5*cos(d*x+c))*e^3/(cos(d*x+c)+1)

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 114, normalized size of antiderivative = 0.98 \[ \int \frac {(e \sec (c+d x))^{7/2}}{(a+i a \tan (c+d x))^3} \, dx=-\frac {2 \, {\left (3 i \, \sqrt {2} e^{\frac {7}{2}} e^{\left (3 i \, d x + 3 i \, c\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, e^{\left (i \, d x + i \, c\right )}\right )\right ) + \sqrt {2} {\left (3 i \, e^{3} e^{\left (4 i \, d x + 4 i \, c\right )} + 2 i \, e^{3} e^{\left (2 i \, d x + 2 i \, c\right )} - i \, e^{3}\right )} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}\right )} e^{\left (-3 i \, d x - 3 i \, c\right )}}{5 \, a^{3} d} \]

[In]

integrate((e*sec(d*x+c))^(7/2)/(a+I*a*tan(d*x+c))^3,x, algorithm="fricas")

[Out]

-2/5*(3*I*sqrt(2)*e^(7/2)*e^(3*I*d*x + 3*I*c)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, e^(I*d*x + I*c
))) + sqrt(2)*(3*I*e^3*e^(4*I*d*x + 4*I*c) + 2*I*e^3*e^(2*I*d*x + 2*I*c) - I*e^3)*sqrt(e/(e^(2*I*d*x + 2*I*c)
+ 1))*e^(1/2*I*d*x + 1/2*I*c))*e^(-3*I*d*x - 3*I*c)/(a^3*d)

Sympy [F(-1)]

Timed out. \[ \int \frac {(e \sec (c+d x))^{7/2}}{(a+i a \tan (c+d x))^3} \, dx=\text {Timed out} \]

[In]

integrate((e*sec(d*x+c))**(7/2)/(a+I*a*tan(d*x+c))**3,x)

[Out]

Timed out

Maxima [F(-2)]

Exception generated. \[ \int \frac {(e \sec (c+d x))^{7/2}}{(a+i a \tan (c+d x))^3} \, dx=\text {Exception raised: RuntimeError} \]

[In]

integrate((e*sec(d*x+c))^(7/2)/(a+I*a*tan(d*x+c))^3,x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is undefined.

Giac [F]

\[ \int \frac {(e \sec (c+d x))^{7/2}}{(a+i a \tan (c+d x))^3} \, dx=\int { \frac {\left (e \sec \left (d x + c\right )\right )^{\frac {7}{2}}}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{3}} \,d x } \]

[In]

integrate((e*sec(d*x+c))^(7/2)/(a+I*a*tan(d*x+c))^3,x, algorithm="giac")

[Out]

integrate((e*sec(d*x + c))^(7/2)/(I*a*tan(d*x + c) + a)^3, x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(e \sec (c+d x))^{7/2}}{(a+i a \tan (c+d x))^3} \, dx=\int \frac {{\left (\frac {e}{\cos \left (c+d\,x\right )}\right )}^{7/2}}{{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^3} \,d x \]

[In]

int((e/cos(c + d*x))^(7/2)/(a + a*tan(c + d*x)*1i)^3,x)

[Out]

int((e/cos(c + d*x))^(7/2)/(a + a*tan(c + d*x)*1i)^3, x)